Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction

نویسندگان

  • B Ceccarelli
  • W P Hurlbut
چکیده

Frog cutaneous pectoris muscles were treated with low doses of crude black widow spider venom (BWSV) or purified alpha-latrotoxin, and neuromuscular transmission, quantal secretion, changes in ultrastructure and uptake of horseradish peroxidase (HRP) were studied. When these agents were applied to muscles bathed in a Ca2+-free solution with 1 mM EGTA and 4 mM Mg2+, the rate of quantal secretion rose to high levels but quickly subsided; neuromuscular transmission was totally and irreversibly blocked within 1 h. The terminals became swollen and were depleted of vesicles; HRP was not taken up. When BWSV was applied to other muscles bathed in a solution with 1.8 mM Ca2+ and 4 mM Mg2+, the rate of secretion rose to high levels and then declined to intermediate levels that were sustained throughot the hour of exposure. Neuromuscular transmission was blocked in fewer than 50% of these fibers. The ultrastructure of these terminals was normal and they contained large numbers of synaptic vesicles. If HRP had been present, most of the synaptic vesicles were labeled with reaction product. These observations suggest that Ca2+ plays an important role in endocytosis at the frog neuromuscular junction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion

Recycling of synaptophysin (p38), a synaptic vesicle integral membrane protein, was studied by the use of antisera raised against the protein purified from frog brain. When frog cutaneous pectoris muscles were fixed at rest, a bright, specific immunofluorescent signal was observed in nerve-terminal regions only if their plasma membranes had been previously permeabilized. When muscles were fixed...

متن کامل

The role of cGMP-dependent signaling pathway in synaptic vesicle cycle at the frog motor nerve terminals.

The role of cGMP-dependent pathways in synaptic vesicle recycling in motor nerve endings during prolonged high-frequency stimulation was studied at frog neuromuscular junctions using electrophysiological and fluorescent methods. An increase of intracellular cGMP concentration (8-Br-cGMP or 8-pCPT-cGMP) significantly reduced the cycle time for synaptic vesicles through the enhancement of vesicul...

متن کامل

Synaptic Vesicle Pools at the Frog Neuromuscular Junction

We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in a...

متن کامل

F-actin is concentrated in nonrelease domains at frog neuromuscular junctions.

To gain insight into the role of F-actin in the organization of synaptic vesicles at release sites, we examined the synaptic distribution of F-actin by using a unique synaptic preparation of frog target-deprived nerve terminals. In this preparation, imaging of the synaptic site was unobstructed by the muscle fiber cytoskeleton, allowing for the examination of hundreds of synaptic sites in their...

متن کامل

Optical measurements of activity-dependent membrane recycling in motor nerve terminals of mammalian skeletal muscle.

Motor nerve terminals in a variety of rat and mouse skeletal muscles were stained in an activity-dependent fashion using the styryl dyes FM1-43 or FM2-10. Low-light video microscopy and digital image processing techniques were used to evaluate destaining of the preparations during application of depolarizing stimuli. Best results were obtained with the mouse triangularis sterni muscle. Quantita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1980